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Abstract

Gamma-rays of astrophysical origin having energy Eγ ≳ 10 GeV produce a cascade

of secondary particles called an extensive air-shower upon their interaction with the

particles in the atmosphere. Detecting these gamma rays is crucial to understanding

the nature of high-energy particles and non-thermal emissions in the universe. The

High Energy Spectroscopic System (H.E.S.S) uses an array of Cherenkov telescopes

to detect the emission from the air-shower particles. H.E.S.S has been successful in

detecting TeV gamma rays from various sources like supernovae, AGNs and pulsars.

This thesis involves the use of monoscopic observations of the Vela pulsar from the

central CT5 telescope of H.E.S.S to detect pulsations in the sub-100 GeV energy

range.

The analysis process requires separating the gamma-ray induced showers from

the background-dominated cosmic-ray induced showers. This process of separation

is carried out in H.E.S.S using a Boosted Decision Tree classifier (BDT) by training

on point-source Monte-Carlo simulations of gamma-ray showers. This separation is

comparatively difficult for low energies using single telescope observations due to high

similarities in the observed properties of the shower. Having additional features that

are different for the two classes would be beneficial for this process. This thesis

presents the improvement in the performance of the classifier by adding new input

parameters to the BDT training process. The parameter among them that is the most

helpful in the discrimination is discussed. The results from training the classifier on

two different ranges of shower intensities are also presented.

The selection cuts that define the decision boundary between what is consid-

ered signal or background are optimized to get the best significance of signal over

background. Further, a consistency check using diffuse Monte-Carlo simulations of

gamma-ray showers is performed to investigate the effect the trained model could

have on showers recorded at different quadrants of the camera.

An improved background separation at low energies would benefit in better dis-

tinguishing the pulsar signal from the background. This thesis also presents the

application of the improved performance of the classifier to the Vela pulsar to get a

spectral energy distribution in the 30 to 100 GeV energy range. Finally, the results

are compared with the previous detections of Vela with H.E.S.S.
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Chapter 1

Introduction

1.1 Non-thermal radiation

The radiation emitted by a black body can be associated with a well-defined spectral

energy distribution according to Planck’s radiation law. This radiation is dependent

on the temperature of the black body and is called thermal or black body radia-

tion. While a lot of the radiation coming from space can be associated with thermal

processes, there exists radiation in certain wavelengths that cannot be linked to a

radiating black body and are said to have non-thermal origins. Their spectral energy

distribution is very different and most commonly resembles a power law. Examples

of such radiation are high-energy γ-rays, fast moving positively charged nuclei, radio

and X-rays. Fig 1.1 shows the galactic plane in different wavelengths and it can be

seen that a large part of the center is very luminous in wavelengths other than optical

and infrared. The discovery of sources responsible for the production of non-thermal

radiation and the underlying processes is an active area of research.

Earth is constantly being bombarded by charged particles traveling close to the

speed of light. Having energies orders of magnitude greater than TeV, they are

capable of penetrating and ionizing the upper atmosphere. First confirmed by Victor

Hess using balloon experiments that their origin has little to do with the Sun as

their spatial distrubution is isotropic. The reason being that charged particles can

deviate from their original direction through multiple deflections from interstellar

and intergalactic magnetic fields. Apart from the most energetic of these particles,

their direction serves no purpose in determining the source of emission. The energy

spectrum of these charged particles, termed cosmic rays, can be approximated by a

power law with an index of -2.7 [1]. There are no known thermal mechanisms that

can produce particles with such energies and spectral distribution.

Astrophysical γ-rays on the other hand follow a rectilinear path, undeflected by

1



1.2 Pulsars

Fig 1.1: A multi-wavelength view of the galactic plane (credit: NASA)

magnetic fields and point to the direction of their source. For a black body’s radia-

tion to peak at gamma-rays they would need to have a temperature of over 109 K.

Such temperatures can be achieved in some cases like at the core of a star during a

supernova, but γ-rays have been detected from sources that are not known to have

such temperature, for example, a neutron star [2]. These γ-rays are most often the

products of radiation losses form high energy charged particles. Leptonic process in-

volve electrons and positrons losing their energy to synchrotron and Inverse Crompton

(IC) radiation. Synchrotron radiation is responsible for the observed radio and X-ray

spectra, whereas the IC scattering of thermal photons like the Cosmic Microwave

Background (CMB) produces γ-rays in the high energy (GeV) and very high energy

(TeV) range [3]. γ-rays from Hadronic processes involve the decay of neutral pions

π0 → γ+γ which result from the collision of the charged particle with ambient nuclei

[4].

The requirement of the presence of energetic charged particles for the production of

γ-rays make them an important tool to discover the source of cosmic-ray acceleration

and their distribution. The sources capable of having such acceleration power are

called cosmic accelerators. Some of them are Active Galactic Nuclei (AGNs), pulsars

and supernova remnants. This thesis is mostly concerned with non-thermal γ-ray

emission from pulsars.

1.2 Pulsars

Pulsars are neutron stars that are rapidly rotating with periods ranging from mil-

liseconds to a few seconds. Resulting from core-collapse supernovae, their fast period

2
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1.2 Pulsars

Fig 1.2: The magnetosphere of a pulsar and its terminologies [7].

is a consequence of angular momentum conservation. They are very dense and com-

prise of degenerate neutrons. This dense nature results in a very high magnetic field

strength and calculations show that they are of the order of 1012 Gauss [5]. Due to

their rotation, their detection can be characterised by pulsed signals periodic in time

and this pulsation can sometimes be seen in multiple wavelengths. The integrated

pulse profile of the Vela pulsar is shown in Fig 1.3 as an example. It is important

to know the morphology of the pulsar magnetosphere in order to understand the

emission mechanisms.

1.2.1 Magnetosphere

Pulsars have bipolar magnetic fields whose magnetic axis is usually at an angle from

the rotation axis (refer to Fig 1.2). For a pulsar with angular velocity Ω, the light

cylinder defines an imaginary surface whose radius is defined as the distance from the

rotation axis where the rotational velocity equals the speed of light, RLC = c/Ω. The

magnetic field lines which are within this cylinder are closed whereas those outside

the cylinder are open and extend to infinity. Theoretical models usually assume the

pulsar as a perfectly conducting sphere where the electric field inside the surface is

zero, i.e. E = −(Ω× r)×B/c [6]. Continuity of the electric field requires that there

is a non-zero component of the electric field parallel to the magnetic field, outside the

surface (E · B ̸= 0). This electric field is strong enough to pull the surface charges

away from the surface and these charges further screen the electric field, giving a

force-free state in the plasma-filled magnetosphere as well.

3



1.2 Pulsars

Particle acceleration

The acceleration of charges needs the presence of strong electric fields, meaning that

the force-free nature of charges has to be broken. This would imply that there need

to be pockets of low density where E+(Ω×r)×B/c ̸= 0 and the residual E field can

accelerate particles. Two main regions have been identified where these acceleration

gaps can exist. One is between the closed and open field lines near the light cylinder,

called the outer gap and the other is the polar gap located at the magnetic poles.

This gives rise to two locations of particle acceleration and subsequent non-thermal

emission.

Polar gap: The edges of the polar gap region are given by the last open magnetic

field line tangential to the light cylinder. The residual magnetic field accelerates

the primary particles which suffer radiation losses through curvature radiation and

inverse Compton effect [8]. Curvature radiation is a type of synchrotron radiation

where the charged particles radiate under the influence of curved magnetic fields.

The inverse Compton scattering of the surface X-rays is responsible for the observed

γ-ray flux according to this model. The presence of strong magnetic fields facilitates

the production of electron-positron pairs through a single-photon conversion process.

These pairs move along the magnetic field lines further producing more γ-rays, and

this cascade creates a secondary pair plasma. The secondary plasma streams out

along the magnetic field lines with large γ factors ∼ 10 − 103. These secondary

plasma particles are proposed to produce the measured radio flux, at a distance from

the surface. The attenuation of γ-rays to e± pair-production in the B field produces

a characteristic sharp exponential cut-off in the observed spectrum.

Outer gap: The emission region in the outer gap model is situated near the light

cylinder along the null field lines (Ω ·B = 0) which separate the charges of opposite

polarity [9]. The gap results from the inefficiency of the surface charges to replace the

charges flowing out along the open field lines. This creates the acceleration gap that

accelerates the charged particles. Being far from the surface, the density of thermal

photons is low at the outer gap, making curvature and synchrotron the main emission

mechanism for GeV photon energies. However, TeV photons are likely to be the result

of IC scattering of infrared photons. Unlike the polar gap scenario, the emission is

not attenuated by γ − B pair creation. Limited mostly by the curvature radiation,

the exponential cut-off starts at higher energies and is expected to be less steep.

There have been a lot more modifications to the theoretical models both analytical

and also with the help of detailed simulations. A recent review of the emission models

can be referred to [7]. The energy radiated in the form of non-thermal radiation is

transferred from the pulsar’s rotational kinetic energy. This loss of energy is responsi-

4



1.3 γ-ray detection techniques

ble for the slowing down of pulsars over time. Through precise timing measurements,

this can be measured in the form of a period derivative. Although small, this becomes

important for time-averaging the pulsed signal from years of observational data. For

a brief description of pulsar and pulsar astronomy, refer to [10]

1.3 γ-ray detection techniques

The observation of γ-rays can be categorised into direct and indirect detection. The

atmosphere is responsible for absorbing most of the γ-rays and there is little to no flux

on the ground. Therefore direct detection involves the use of space-based telescopes

like the Fermi-LAT, INTEGRAL, etc, which have a relatively small collection area

of around a few square metres. This approach is limited to photon energies of a few

100 GeV after which the detection becomes flux-limited due to most sources having

a power law like flux. Their detection requires a much larger collection area and

increased observation times. Increasing the collection area of space-based telescopes

is not a viable option due to the requirement of launching them on space crafts and

hence other methods are required.

High energy γ-rays (Eγ >∼ 10 GeV), however, on interacting with particles in the

atmosphere create a cascade of secondary particles known as extensive air-showers.

Detection of these secondary particles and reconstruction of initial γ-ray population is

the basis of very high-energy γ-ray astronomy. There are a few different ways in which

this is carried out. Imaging Atmospheric Cherenkov Telescopes (IACTs) like H.E.S.S

and MAGIC make use of the Cherenkov light emitted by the secondary particles

in the atmosphere, arrays like HAWC (High Altitude Water Cherenkov) detect the

Cherenkov light emitted by secondary particles in water tanks, and there are some

radio telescopes that detect the radio emission from the shower. These methods offer

a large effective collection area (over 105 m2) which is required for the low flux in this

energy range. This thesis is focused on the γ-ray observations of the Vela pulsar from

the CT5 telescope in the High Energy Spectroscopic System (H.E.S.S) array. The

details of the detection technique employed in H.E.S.S is discussed in Chapter 2.

1.4 Vela Pulsar

The Vela pulsar (PSR 0833-45) is one of the fastest spinning pulsar known with a

period of 89 ms. The γ-ray pulsations from the pulsar were first detected by the

SAS-2 telescope at energies above 35 MeV [12]. Later it was also detected by the

Fermi-LAT [13]. The phase-averaged pulse from the Fermi-LAT is shown in Fig 1.3.
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1.4 Vela Pulsar

Fig 1.3: Pulse profile from the Fermi-LAT (lower) and the H.E.S.S (upper) observations.
In the bottom part, the double-peaked emission is clearly visible [11].

The pulse profile from the Fermi-LAT consists of two peaks P1 and P2 with P2 being

the most significant among the two. There is also a bridged emission P3 that connects

the two peaks. P1 and P3 cannot be seen in the H.E.S.S pulse profile.

Spectral analysis showed that the best-favoured model was a power law with an

exponential cut-off

dN/dE = ϕ0(E/E0)
−Γ exp−(E/Ec)

b (1.1)

with b < 1. The test statistic was favored against a super-exponential cut-off

(b > 1) implying that the outer gap scenario is likely responsible for the high-energy

emission in Vela. In addition, the Fermi analysis also showed that the emission height

in Vela is comparable to RLC . Later, H.E.S.S was also successful in the detection

of the pulsar above 20 GeV using its CT5 camera with evidence of curvature [11],

and a recent H.E.S.S study using a stereoscopic approach reported the pulsations

to extend beyond TeV [14]. The model which best explained the observed TeV

flux was associated with synchrotron/IC rather than curvature/IC, and the emission

height was restricted to 1-2RLC . It was also shown that the high-energy (GeV) flux

detected by the CT5-only approach and the very high-energy flux (TeV) from the

stereo analysis could be best reproduced if two different polulations of electrons(and

positrons) were assumed.

This thesis intends to improve upon the background separation at low energies

and the application of the improved analysis on the Vela pulsar.
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Chapter 2

Ground-based detection

This section presents an overview of the detection techniques that are employed by

IACTs, particularly in H.E.S.S. To construct a map of the sky, two main quantities

are required: the direction of the photon and its energy. The basic principle employed

by IACTs is to use the information gathered from the light emitted by the air-shower

particles to reconstruct the direction and energy of the γ-ray that initiated the shower.

2.1 Air showers

γ-rays with Eγ ≳ 10 GeV, upon interacting with the nuclei of molecules in the

atmosphere, initiate the shower by the creation of e± pair. The pairs have relativistic

speeds and further produce γ-rays through the process of Brehmmstrahlung. The

two processes, pair production and Brehmmstrahlung continue to create a cascade

of γ-rays and e±, with the energy being divided among the particles/photons with

each step. The cascade continues until the energy of γ-rays has reached the critical

energy required for pair creation, and the rest of the energy of e± is lost through

ionization processes. A simulated air-shower from a γ-ray is shown in Fig 2.1. The

shower contains a core that consists of most of the particles and a fraction of particles

having larger transverse velocities are away from the core.

Most particles in the air-shower are moving at relativistic speeds that exceed the

speed of light in the medium. This produces Cherenkov radiation which is radiated

at an angle of cosθ = 1/βn from the direction of the moving particle, for a medium

with refractive index n. The collective emission is radiated at an angle of θ ∼ 10 from

the direction of the shower core. The Cherenkov radiation is in the visible range and

mostly near the blue part of the spectrum. The flash of light lasts a few nano-seconds

and IACTs rely on fast photomultipliers to detect them. The amount of Cherenkov

light produced depends on the absolute number of particles in the shower, which,
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2.1 Air showers

Fig 2.1: Simulated shower images of a γ-ray and a proton. [15]

is dependent on the initial energy of the shower-inducing particle. Therefore the

Cherenkov light yield is proportional to the γ-ray energy.

Complications arise due to the fact that air-showers can also be initiated by high-

energy cosmic-rays. It becomes important to differentiate whether the Cherenkov

light detected by the telescope came from a γ-ray or a cosmic-ray shower. Fortunately,

there are some key differences between the showers which can be used as a starting

point to separate the two kinds.

2.1.1 Hadronic vs electromagnetic showers

Electromagnetic showers (induced by a γ-ray) contain mainly electrons, positrons

and γ-rays. The shower profile is fairly homogeneous and the transverse spread is

small. Whereas, in the case of hadronic showers (induced by cosmic-rays), the shower

consists of the following components:

� nuclear fragments resulting from the collision with molecules in the atmosphere

� decay components like π, K mesons

� γ-rays from π0 decay, which can initiate their own electromagnetic cascade

� muons from the decay of charged mesons

The presence of these sub-components gives the hadronic showers an irregular

profile, as can be seen from Fig 2.1. This also results in them being wider than their

electromagnetic counterparts.
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2.2 H.E.S.S

(a) (b)

Fig 2.2: (a) The angular profile of the air-shower being captured by a Cherenkov telescope.
[16] (b) The parametrization of the shower image and stereoscopic reconstruction using
images from two telescopes [17]

2.2 H.E.S.S

Located in Namibia, the H.E.S.S array consists of four 12 m diameter telescopes

named CT1-4 and one larger 28 m diameter CT5 telescope. CT5 is placed at the

center of a square with CT1-4 at each corner. The CT5 telescope can collect more

light and hence is able to capture more low-energy showers compared to CT1-4. The

array is used in different configurations, depending on the science case, to perform

an analysis. The mono mode makes use of only the events from CT5 and offers an

increased sensitivity to low-energy events. The stereo mode makes use of the CT1-4

telescopes, having the requirement that at least two of the four telescopes be triggered

at a time. This method is sensitive to higher energies and gives improved direction

and energy reconstruction. A third hybrid method makes use of all five telescopes.

IACTs reflect the incoming Cherenkov light with the help of mirrors onto the

focal plane. A detector centered on the focal plane collects this light, whose pixels

are composed of photomultiplier tubes. When the Cherenkov light from the air-shower

is in the field of view of the telescope, the detector captures the angular profile of

the shower, as shown in Fig 2.2. The Cherenkov light pool covers a large area on the

ground, which offers this method a large effective area of collection (over 105 m2).

An individual detection of an air-shower is called an event. The higher the energy of

the particle that induced the shower, the brighter the shower image produced by the

photomultipliers, given the same observation conditions.

Since the Cherenkov light is in the blue wavelength, the telescope cannot be
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2.2 H.E.S.S

Fig 2.3: An extreme example of the images of two showers left from a γ-ray, right from
a proton. [15]

operated during the day due to contamination from sunlight or also during nights

with bright moon light. During the night, however, starlight and other stray light

constitute the unwanted background referred to as the Night Sky Background (NSB).

Thus the captured image consists of noise pixels and needs to be cleaned to retain

only the shower images. In H.E.S.S, two cleaning algorithms are used:

� Tailcut: This method uses a nearest-neighbor criteria, where those pixels are

kept that have a minimum amplitude say of 9 p.e. (photoelectrons) and a

certain number of neighboring pixels that have at least say 16 p.e. amplitude.

The minimum number of neighbors and amplitude threshold can be varied.

� Time-cleaning: This method makes use of a clustering algorithm that takes

into account both the spatial and temporal clustering of pixels. The shower

pixels are going to be correlated in both space and time, whereas the noise

pixels will be de-correlated. This method is more efficient in removing the

noise, while retaining the shower pixels.

The cleaned images will now contain only the required pixels needed for further

data reduction. The events are parametrised by using the moments of the shower

image and are required for reconstruction. The meaning of these parameters are

further explained in section 3.2.

2.2.1 Reconstruction

The major axis of the shower image gives the projected direction of shower propaga-

tion. Somewhere along this axis is the point of impact of the γ-ray that initiated the
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2.2 H.E.S.S

shower. The statistical nature of air-showers makes it impossible to get the energy

from the shower directly. No two showers would look identical even if they were pro-

duced from a γ-ray with the same energy. Depending on the telescope configurations,

the reconstruction of energy and direction is carried out differently. If two or more

telescopes detected the same shower (refer to Fig 2.2b), as in the case of stereo config-

uration, they each see a different projection of the same shower and the intersection

of the major axes gives the point of origin of the shower (stereoscopic reconstruction).

This is the simplest approach. For the energy reconstruction, in H.E.S.S, a pixel-wise

template fitting method has been in use recently for events involving two or more

telescopes [18].

For the case of mono, stereoscopic reconstruction is not possible. A neural net-

work is instead used to predict the source displacement along the major axis of the

image. The training of the neural network is performed using simulated γ-ray events.

Detailed Monte Carlo simulations of air-showers, telescope optics and electronics are

carried out for a range of input energies, directions and impact points on the ground,

to produce thousands of shower images. The model trained on the parameters derived

from the images is then used for predicting the direction of events from a real obser-

vation. A separate neural network is trained using the same parameters to predict

the energy of the γ-ray.

2.2.2 Gamma-hadron separation

The telescopes capture many more background events coming from a cosmic-ray than

γ-ray events. The observations are mostly background-dominated and can have over

ten times more background events than γ-ray events. For performing an analysis, the

background events need to be separated from the required events. The differences in

the shower profiles between γ-ray and hadron showers are also reflected in the images

captured by the telescopes. Fig 2.3 shows an example of the two shower images, one

from a 1 TeV γ-ray and the other from a 2.6 TeV proton. As the γ-ray showers are

more narrow and regular, their shower images are more elliptical. In comparison,

the hadronic images are wider and irregular owing to the presence of multiple sub-

components. This difference can be used to differentiate between the said categories.

Fig 2.3 is an extreme example of the two showers where the difference can be clearly

seen, but this is often not the case and expecially when dealing with energies below

a few hundred GeV the showers are very similar.

A parameter selection based approach was initially used for event selection [19].

This approach uses the fact that the parameter distribution of the two sets of shower

differs, as can be seen in Fig 2.4. A cut on Monte Carlo-based distribution value
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2.2 H.E.S.S

Fig 2.4: Shown are the distribution of two shower image parameters for both γ-ray and
cosmic-ray showers. Examples of selection cuts are depicted with the dashed black line.

would be decided that would represent the most γ-like events. An event that passes

these cuts would be classified as a γ-ray event. This method is not very efficient as

it does not take into account the cross-correlations between the different parameters

and results in more background events passing the cuts.

More recently, newer methods have made use of machine learning tools like neural

networks and decision trees. In H.E.S.S, the gamma-hadron separation is done using

a Boosted Decision Tree (BDT) classifier [20]. This is a multivariate method that

takes the parameter distribution as input and outputs a probability value ζ that is

related to how likely the input parameters are from a γ-ray shower. More information

on BDT is presented in the next chapter. This method has been proven to be much

better than a simple cut-based selection as it also incorporates the correlation between

the various parameters [20]. A value of ζ is selected based on the science case, whether

the spectrum is hard or soft. High-energy γ-ray events have well spearated parameter

distributions and therefore get a higher value of ζ. A higher cut on ζ would be ideal

for a hard spectrum and vice versa.

The BDT is trained on the set of parameters derived from Monte Carlo simulations

for γ-ray shower. The simulations are carried out for a point source with an assumed

spectral index, which is at a specific offset in the field of view of the telescope. For the

background, the parameters are taken from real observations of cosmic-ray showers,

called OFF-runs. These observations are carried out in regions without any known

γ-ray sources, so the recorded showers mostly contain cosmic-ray showers. From the

point of view of what the telescope sees, the γ-ray showers originate from a point

in the field of view (when talking about point sources) which is at some offset from

the pointing position, whereas the background is diffuse and originates from every
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2.2 H.E.S.S

direction in the field of view. The idea is to differentiate between the signal events from

the diffuse background and therefore the background events are not selected based

on offset from the pointing position. There are also MC simulations that simulate

diffuse signal events and more information about them is presented in section 3.8.

To ensure good separation between signal and background, the training is carried

out separately in zenith angle bands. A cut on a given value of ζ is associated with

a signal efficiency (fraction of signal events remaining after the cut) and background

fraction (fraction of background events remaining after the cut). The ideal case would

be to get a high signal efficiency and a very low background fraction after a cut. Since

the performance of the classifier is not the same across zenith bands, the classifier

output ζ is scaled to a value that corresponds roughly to the signal efficiency, called

ζBDT . A cut on ζBDT of say 0.5 would correspond to roughly 50% signal efficiency

across all the zenith angle bands, making the process uniform.

2.2.3 IRFs and lookups

Using the above techniques, the events that are most γ-like can be determined, along

with their reconstructed direction and energy. However, the required flux cannot be

calculated from this alone. Relating the count data to the flux requires the knowledge

of the response of the instrument to any signal, termed the Instrument Response

Functions (IRFs). The IRFs are produced using simulated events that pass two

selection cuts: the ζBDT , which represents the most γ-like events and an angular

size cut around the simulated source position, called the θ2 cut. The θ2 represents

the squared angular difference between the true and reconstructed directions. The

following are the important IRFs:

� Energy dispersion: The energy dispersion relates the reconstructed energy to

the most probable simulated true energy. This is required to present the flux in

terms of the true energy of the γ-ray. To avoid having large differences between

true and reconstructed energy, usually, the analysis is carried out in the energy

range where the relative error with respect to the true energy is less than 10

percent.

� Effective area: The effective area IRF (refer to Fig 2.5a) is the energy-wise

collection area of the instrument, calculated from the simulated γ-ray events

that pass the selection cuts. The effective area, along with the livetime (time

of observation), are divided from the counts to represent the results in physical

units of flux. The rising edge of this IRF, along with the safe range of energy

dispersion determines the overall lower energy threshold.
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2.2 H.E.S.S

(a) (b)

Fig 2.5: (a) The effective area of the H.E.S.S array as a function of simulated energy. (b)
A Monte-Carlo derived PSF, normalised to counts binned in θ2. [17]

� PSF: The Point Spread Function (refer to Fig 2.5b) refers to the overall an-

gular spread of a point source mostly due to instrumental and environmental

uncertainties. This is approximated by the 68 percent containment radius of

the events that pass the ζBDT cut. The smaller the spread, the better the an-

gular resolution. The differential performance of the classifier/neural network

on different event energy makes the containment radius and hence the PSF an

energy-dependent quantity.

The selection cuts for which the IRFs are produced are normally chosen based on

an optimization process, that optimises for the best significance of the signal with

respect to the background, after weighting the simulations for an assumed source

spectrum. Since the instrument response varies within the field of view, a set of IRFs

for each zenith, azimuth and offset are normally produced that form the lookups that

will be referred to when performing an analysis.

For a given bin in true energy ∆Etrue and an assumed spectral model ϕ(Etrue),

to get the predicted counts Npred at a given position in the field of view, the above

mentioned IRFs at that specfifc position are utilized in the following manner,

Npred = Nbg +

∫
∆Etrue

AEFF (Ereco) · PSF (Ereco) · EDISP (Etrue) · ϕ(Etrue)dEtrue

(2.1)

where Nbg is the predicted background counts from the background model. The

background estimation for a pulsar analysis is briefly described in section 4.1.
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Chapter 3

Improving gamma-hadron

separation

This section presents the improvement in gamma-hadron separation by adding new

parameters to the separation training, starting with information on the classifier being

used for the training.

3.1 Boosted Decision Trees (BDT)

A binary decision tree is a machine learning algorithm that repeatedly splits the

training instances into two sets depending on a condition, which ultimately minimizes

the loss function. A simple schematic of a decision tree is shown in Fig 3.1a. Each

split is called a node(shown in blue) and each instance ends up on a leaf node(green)

where no further splitting takes place. Width greater than 0.001 is one example of a

decision at one node. The instances are split based on whether the decision is true or

false. For each node, all combinations of such decisions are chosen from the parameter

space and the one which best minimizes the loss function is assigned. Every instance

on a leaf node gets assigned the same score which ultimately decides the class(signal

or background) of the leaf node. After a tree is trained, in order to predict the class

of a new instance, its parameters are passed through the trained tree and is assigned

the class of the leaf node it ends up in.

In the random forest approach, an ensemble of decision trees are trained in parallel

and the prediction from each tree is averaged to get the final probability score. In this

case, the package used is called xgboost1 which also uses tree boosting. This method

used gradient descent starting from a single tree, to determine at each iteration the

1xgboost package: https://github.com/dmlc/xgboost.git

15

https://github.com/dmlc/xgboost.git


3.1 Boosted Decision Trees (BDT)

(a) (b)

Fig 3.1: (a) Schematic of a simple decision tree. Each node shown in blue represents a
condition to be satisfied. The leaf nodes are shown in green. Each represents a single class.
(b) The definition of the new parameters by dividing the shower image into three sectors.

tree whose output when added gives the best reduction in the loss [21]. The evaluation

metric normally employed in binary classification is the binary log loss function given

by

logloss =
1

N

N∑
i=1

−(yi ∗ log(pi) + (1− yi) ∗ log(1− pi)) (3.1)

where N is the number of instances in the training set, yi is the true label and pi is

the prediction of the classifier.

The xgboost package uses several hyperparameters that set the learning rate, step

size and control overfitting. The hyperparameters were chosen using a parameter

search in which each hyperparameter was varied separately and those were selected

that gave the best evaluation score. Most of the hyperparameters produce little

variation in performance for a wide range of values. The distribution of the classifier

output is normally compared with both the training and test set to check for signs of

overfitting, in which case the test set would perform poorly compared to the training

set. All the performance plots(like ROC) referred to in the following sections were

plotted using the test set unless otherwise stated.

Further, the BDT training is performed on Monte-Carlo simulation of point sources

with an assumed spectral index of -2. The training is carried out in zenith angle bands

and the simulated source position at 0.5 degrees offset from the pointing position. The
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3.2 New parameters

Parameter name Definition
Hillas Length l Length of the major axis of the image
Hillas Width w Length of the minor axis of the image
abs(Hillas Skewness) Absolute value of skewness along the major axis
Hillas Kurtosis Kurtosis along the major axis
Log Density log (total intensity / (l * w))
Length over log size l / log(total intensity)

Table 3.1: The definition of the parameters currently used in the training, a.k.a old
parameters.

following discussions are specifically based on the zenith angle band of 20 deg, 180

deg azimuth and 0.5 deg offset, but the same can be extended to other zenith angle

bands as well (see section 3.7).

3.2 New parameters

The parameters currently in use for gamma-hadron separation in mono are the Hillas

parameters, log density (intensity/length*width) and length over log size. Refer to

Table 3.1 and Fig 2.2b for the definition of these variables. These parameters are

defined using the moments of the cleaned shower image. The Hillas length and width

relate to the dimensions of the image. The skewness measures the symmetry of the

image along the major axis and kurtosis measures the tailedness along the same

axis. The BDT will learn the correlations between these parameters for signal and

background and hence classify the events.

Although these variables result in a good separation for high-energy events, in

the case of low-energy events these are not enough. There are a few problems that

need to be overcome when it comes to mono. Since low energy events are only seen

by one telescope (CT5), constraining the image parameters is less precise compared

to stereo where they are averaged over all the telescopes that see the shower. Low

energy events especially are smaller and have low image intensities. Due to this

reason, the images look very similar between signal and background and most of the

parameter distributions overlap heavily. Fig 3.2 shows the parameter distribution

for two different energy ranges. The distributions in the 60-100 p.e. range overlap

heavily compared to the 200-300 p.e. range. Having distributions that overlap to a

large extent would result in a bad performance of a classifier that relies on decisions

based on the distributions.
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3.2 New parameters

Parameter name Definition
Time gradient (T2 - T0)/(X2 - X0)
Charge asymmetry (Q2 - Q0)/(Q0 + Q1 + Q2)
Length Length between X0 and X2
Width1 Width of sector 0
Width2 Width of sector 2
Radius Radius of curvature of X0, X1 and X2

Table 3.2: The definition of the new parameters.

Fig 3.2: Plots showing the parameter distributions for two intensity/size ranges: 200-
300p.e. and 60-100p.e.

Another issue is that mono events are contaminated by Cherenkov emission from

muons that fell far from the telescope. Muons are produced from the decay of mesons

and are a characteristic sign of hadronic showers. The ringed emission from a muon,

when far from the telescope resembles an arc that would be hard to distinguish from a

gamma-ray shower image at low energies. If there were multiple telescopes involved,

the muon ring might not be visible in all the telescopes and the event could be rejected,

but that is not the case in mono. Therefore, separating a muon ring from a γ-ray

shower would further add to the background rejection.

Additional parameters can be added to the separation training that could poten-

tially increase the performance of the classifier. A few new parameters were developed

that utilize additional information from the shower including the time of arrival and

charge induced in the pixels. These parameters were defined by splitting the shower
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3.2 New parameters

image into three sectors based on the Hillas length, as shown in Fig 3.1b. Then the

center of gravity of each of the sectors is calculated (X0, X1 and X2). Based on this,

the additional parameters are:

� Time gradient: Each pixel has a time associated with it when the pixel gets

activated from the Cherenkov light. The time gradient is the difference in

intensity weighted average time of arrival between the tail and head sector

� Charge Asymmetry: Each pixel also has a charge associated with the pho-

tomultiplier tube. The charge asymmetry is the difference in average charge

between the tail and head sectors, weighted by the total charge in all the sec-

tors respectively.

� Length: The distance between the center of gravity of the head and tail sector.

� Width1: The width of the tail sector.

� Width2: The width of the head sector.

� Radius: The radius of curvature of the center of gravities of the three sectors.

An important thing to note here is that since the shower images can have arbitrary

directions with respect to the camera/detector coordinates, the distribution of width

1 and width 2 would be meaningless as they could correspond to either the head or

tail, without explicitly knowing the direction of the shower propagation. As can be

inferred from Fig 3.1b, this is due to the fact the depending on the orientation of the

shower image in the camera, sector 0 and sector 2 can correspond to either the head

or tail of the shower. Also meaningless are the signs of the time gradient and charge

asymmetry due to the same reason. However, the skewness carries the information

about the shower propogation as the shower is always skewed in the same manner

with respect to the position of the source. Therefore the sign of the skewness can be

used to reshuffle the distribution of widths 1 and 2 such that their distributions now

correspond to the same part of the shower, i.e. the tail and the head respectively.

Similarly, the signs of the time gradient and the charge asymmetry can be changed

based on the sign of the skewness.

After the corrections, ideally, the background events should have an uneven distri-

bution of charge and time of arrival compared to signal events. The radius would help

separate out events contaminated by muon rings, as they would have a curvature that

would otherwise not be present in a γ-ray shower image. These additional parameters

are used to improve the performance on two configurations/analysis cuts called safe
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3.3 Safe configuration

and loose, explained in the next section. The definitions of the new parameters are

also summarised in Table 3.2.

3.3 Safe configuration

A configuration or config in short is a set of analysis cuts that are tuned for a specific

type of analysis. For example, the safe configuration contains images above 250 p.e.

total image amplitude and a minimum of 10 pixels. Having a 250 p.e. cut would

throw away a lot of low-energy events below 100 GeV. So, this configuration is ideal

for sources having a spectrum like the crab nebula, with a spectral index of around

2.5. Similarly, the loose config consists of different analysis cuts and would be suited

for a different analysis.

The BDT classifier was trained on events from the safe config using two sets of

parameters: one with the new parameters and the other without. The performance

of the BDT classifier can be estimated using the Reciever Operating Characteristics

(ROC) curve that measures the true vs false positive rate (evaluated on the test set)

for different classifier output thresholds. The true positive rate is the proportion of

positive instances that are classified correctly, which in this case are signal events

that are classified as signal. On the other hand, the false positive rate refers to the

proportion of negative instances being classified as positive, that is background events

being classified as signal. The requirement is an increase in the true positive rate and

a reduction in the number of false positives. In the ROC curve, this implies that the

curve should be more towards the left-hand corner, and equivalently the maximum

area under the curve (AUC).

Fig 3.3a shows the ROC curve of the two classifier models. It is seen that the AUC

increases from 0.93 to 0.96 upon adding the new parameters mentioned in the previous

section. This indicates that the classifier performs better with the addition of the new

variables. Fig 3.3b shows the increase in the AUC as the new parameters are added

one at a time in succession. This helps to see which of the new variables contribute

most to the increase in AUC. Of all the variables, the time gradient contributes the

most to the increased performance. The radius and length do not provide a significant

performance boost. The classifier output with the new variables is shown in Fig 3.8a.

Although the performance plots portray well the comparison of the two classifier

models, an absolute comparison of the two can be done by estimating the signal

efficiency as a function of the classifier output. As seen from Fig 3.5a, there is a

general increase in the signal efficiency across the classifier output, for the model

trained with the new parameters. Not only does the signal efficiency (ϵs) increase,
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3.3 Safe configuration

(a) (b)

Fig 3.3: (a) Comparison of the performance of the classifier with and without the new
parameters, on the safe config. (b) The increase in the area under the curve as parameters
are added in succession.

the background fraction (ϵb) is also reduced. Both these points are summarised in Fig

3.5b, which shows ϵs/
√
ϵb also known as Q-value as a function of signal efficiency. For

the same value of signal efficiency, the Q-value shows an improvement with the new

parameters. The distribution peaks towards low signal efficiency with some statistical

fluctuations near zero, implying that cutting on low signal efficiency (hard cuts) could

be beneficial in terms of getting the best signal over background significance. Also,

having a cut that allows for a higher signal efficiency would still benefit from the

reduced background fraction.

An ideal cut would be to have the least amount of background as possible, meaning

that the cut needs to be more towards the right of Fig 3.5a. But since the signal effi-

ciency also decreases, reduction in background fraction would have diminishing results

toward the extreme right. In order to choose the final cuts for the safe configuration,

the MC simulation events are re-weighted to simulate a crab nebula-like spectrum

with a spectral index of -2.5 and a normalization of 10 percent. The weighted spec-

trum is optimized by considering bins in both ζBDT and θ2. To get the number of

background events within the angular size θ from the simulated source position, a

ring is considered around the pointing position and the number of background events

remaining after the ζBDT within the ring is counted. This count is scaled with respect

to the ratio of angular size between the ring and the ON region (the region around the

simulated source), and the observation time. The significance is calculated using the

Li&Ma method which is against the assumption that all the counted events within

the ON region are background [22].
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3.4 Loose configuration

Fig 3.4: The 2D surface of significance as a function of ζBDT and θ2. The red dot represents
the global maximum of the surface.

The optimization resulted in a ζBDT cut of 0.4 and a θ2 cut of 0.012 deg2. The

significance surface is shown in Fig 3.4 as a function of ζBDT and θ2. The peak appears

to be rather broad at the optimized value, and therefore choosing slightly different

cut values would not reduce the significance by a large amount. Therefore the final

cut value for ζBDT is chosen to be 0.5. The cuts are summarised in table 3.3. The

optimized cuts give an overall signal efficiency of around 18 percent.

3.4 Loose configuration

The loose config, as the name suggests has relaxed selection cuts, with a lower image

intensity cut of 60 p.e. and a minimum of 6 pixels in the image. This would allow for

more low energy signal events but that would also be accompanied by a significant

increase in background events. Such a config would be more suitable for sources that

have a steep spectrum, like that of pulsars.

The classifier output of the model trained on the loose events without the new

parameters is compared to that trained on the safe cuts, in Fig 3.6. The loose model

is comparitively worse with a lot of events that are grouped near the middle of the

classifier output. This reduction in performance is expected due to the the fact that

the events that are extra in the loose config are those events that have an amplitude

of 60-250 p.e. including some with a pixel count of less than 10. For such events, the

similarity between the signal and background is more, making the classifier perform

worse for those events.

To confirm the above-mentioned point, the same loose BDT model can be used

to predict the output for two image size ranges, one 60-250 p.e. and the other 250
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3.4 Loose configuration

(a) (b)

Fig 3.5: (a) The signal efficiency and the background fraction as a function of the classifier
output for the safe config. The solid lines represent the model with the new parameters
while the dashed lines represent without them. (b) The Q-value as a function of the signal
efficiency for the safe config, with the black line representing the model without the new
parameters.

Fig 3.6: The classifier output of BDT trained on the safe (hollow histogram) vs the loose
config (filled histogram) with the new parameters.
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3.4 Loose configuration

(a) (b)

Fig 3.7: (a) Comparison of the performance of the classifier with and without the new
parameters, on the loose config. (b) The increase in the area under the curve as parameters
are added in succession.

p.e. above. This comparison shown in Fig 3.8a confirms the fact that the events that

are grouped near the center are mostly events from the former size range. A question

that could be asked here is whether a classifier trained completely on events in the

size range of 60-250p.e would perform any better? This point is further discussed in

detail in section 3.6. However, the ROC curves comparing the models (see Fig 3.7a

)that were trained with the two sets of parameters do show an improvement with the

new parameters, although not by a lot, with an increase from 0.84 to 0.86. Looking

at which parameter provides the largest increase in AUC (Fig 3.7b), the results are

similar to the safe config with the time gradient having the highest effect on the AUC.

The radius and length do not have a major effect on the performance.

3.4.1 Low intensity events

The low intensity events that are classified poorly in Fig 3.8 form a second peak

in some of the parameter distributions. The distribution of width1 is shown in Fig

3.9a. There is clearly a sharp peak near the value of 0.00058. This feature is also

seen in width2 and Hillas Width. It is present in both the signal and background

distributions, and curiously near the same value. As the events are selected for a

higher cutoff value of amplitude and pixel counts, the peak starts to reduce(Fig 3.9b)

and is not present for events with a pixel cut of 15 p.e. Selecting for the exact inverse

of the cuts in Fig 3.9a and by fixing the pixel count to less than 11 pixels, the majority

of the events that belong at the peak can be seen, and can be confirmed that most
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3.4 Loose configuration

(a) (b)

Fig 3.8: (a) The comparison of the loose model trained with the new parameters on two
different size ranges, one 60-250p.e. and the other 250-100000p.e. (b) The classifier output
for a model trained with the new variables exclusively on events in the size range 60-250p.e.
The solid histogram represents the model trained on the whole loose config while the hollow
histogram represents model trained in the 60-250p.e. range.

of them are events with an amplitude less than 200 p.e.

The peak is not just a feature of the specific dataset used, but is also present in

datasets with different zenith angles and offsets and are roughly located at the same

value. Since the parameters are calculated based on the weighted averages (length,

width, amplitude etc) over each pixel with respect to the center of gravity, it could be

a possibility that having only a few pixels one could end up with values that are very

close to each other making the distribution peak at a particular value. The division

of the shower into sectors itself would be ambiguous when dealing with a few pixels.

However, it is not clear what the physical value of the peak, i.e. 0.00058, actually

represents. The sector-wise pixel makeup of events in a small range around the peak

is shown in Fig 3.10. It becomes clear that the events in the peak can be classified into

two distinct distributions: the events from Fig 3.9b constitute the blue distribution

which indeed have a low pixel count in each sector and the rest that have a higher

sector-wise pixel count, shown in red.

The above-mentioned points suggest that the peak is likely a geometric effect

resulting from the finite size of the pixel. This is not an issue with high-energy events

as they have larger images and more number of pixels, but it becomes important for

low-energy events where the dimensions of the images are comparable to the size of

the pixels themselves.
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3.4 Loose configuration

(a) (b)

Fig 3.9: (a) The distribution of Width1 for different pixel cuts, showing a second peak
near the value 0.00058. The peak reduces as number of pixels is increased. (b) The width1
distribution for events with less than 11 pixels shown for different upper limits of image
amplitude.

Fig 3.10: Sector-wise decomposition of pixel makeup (N0, N1, N2) of events having width1
between 0.00056 to 0.0006. The pixel makeup is decomposed into two distributions in each
sector. The blue histograms show the pixel composition of the events from Fig 3.9b, while
the red ones represent the rest of the events in the mentioned width1 range.
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3.4 Loose configuration

The question now is whether to use these events for the gamma-hadron separation

and ultimately for the analysis. Considering gamma-hadron separation, including

these events would not be an issue as the peak is present at the same value for signal

and background, and is consistent with zenith angles and offsets. Although this would

result in a poor classification of these events (as in Fig 3.8), for standard or hard cuts

that select for events with say over 0.8 of classifier output, these events will anyhow

be excluded.

However, for loose cuts, these events might present an issue. Since they are spread

out over a wide range of classifier output, any inconsistency between real data and

MC simulations would result in a varying γ-ray efficiency. In other words, since more

events have the possibility of being misclassified as signal/background due to the

inconsistency, this could result in a larger error. In the case of pulsars though, having

more background is affordable due to the pulsed nature of the signal. As will be

explained in section 4.1, by knowing the rotation period of the pulsar, it is expected

when the pulsed signal belonging to the pulsar would arrive. Based on this, those

events that are outside the pulse duration can be considered as background and be

excluded from the analysis.

3.4.2 Signal efficiency

The signal efficiency is worse compared to the safe config, as is expected due to

the addition of the 60-250 p.e. events that are poorly classified. The background

fraction is also higher for the same reason. The new parameters offer increased signal

efficiency and reduced background fraction. The trend is similar to the safe config

with an increase in Q-value after the addition of the new parameters and the peak of

the Q-value distribution is towards the lower side of signal efficiency. However, the

Q-value at the peak seems to be higher without the new parameters in the training.

The improvement in signal efficiency is more between 0.6 to 1.0 of the classifier output

while the reduction in background fraction is more between 0 to 0.6.

The optimization carried out for a steeper spectrum of index -3 shows two peaks

in the significance plot in Fig 3.12a: one with a ζBDT cut value of around 0.3, θ2 cut of

around 0.015 (call it peak 1) and another with a more loose cut of 0.78 for ζBDT and

a θ2 cut of around 0.05 (call it peak 2). The red dot represents peak 2 which is the

global maximum. The two peaks could be explained by observing that the classifier

output in Fig 3.6 has two peaks, one around 0.5 and the other at the extreme right.

Judging from the signal efficiency curve in Fig 3.11a, peak 2 represents a hard cut

on the classifier output of around 0.9, which would retain mostly high-energy events

above 250 p.e. Whereas, peak 2 would represent a classifier output cut of about 0.45,
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3.4 Loose configuration

(a) (b)

Fig 3.11: (a) The signal efficiency and the background fraction as a function of the classifier
output for the loose config. The solid lines represent the model with the new parameters
while the dashed lines represent without them. (b) The Q-value as a function of the signal
efficiency. The dashed black line represents the model without the new parameters.

config amplitude pixel ζBDT θ2

safe 250 10 0.5 0.012
ultraloose 60 6 0.78 0.05

Table 3.3: The finalized selection cuts for safe and loose

that would also retain some of the low energy events within the size range 60-250 p.e.

This cut would also inevitably let a lot of the background through, but as discussed

in the previous section, would not be a large problem for pulsars when also selecting

in the time domain.

For performing a pulsar analysis using this config, it would benefit to optimize

for a steeper spectrum that most pulsars exhibit. Fig 3.12b shows the significance

plot for a Vela-like spectrum with an index of -4. There is only one peak in this

distribution which is near peak 2 of Fig 3.12a. For such a steep spectrum the high

energy flux is low and a loose cut that this optimization suggests would be required

to keep the low energy events from being thrown away. From this optimization, the

cuts were decided to be 0.78 for the ζBDT and a θ2 cut of 0.05. The final cuts chosen

for the IRF production is summarised in Table 3.3.
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3.5 IRFs

(a) (b)

Fig 3.12: The significance plot of the loose config for (a) a crab nebula-like spectrum with
index -3 and normalization 0.1 at 1 TeV, (b) the Vela spectrum with index -4.

3.5 IRFs

The effective area for the safe config with the ζBDT cut in table 3.3 and without any

θ2 cut is compared to the ones produced previously for older simulations (see Fig

3.13a. The effective area is presented both as a function of true and reconstructed

energy. The energy threshold (approx 10 percent of the peak) is slightly higher with

the new model, with the difference that the effective area after 100 GeV is higher

for the current model. This is directly related to a higher signal efficiency after

∼100 GeV compared to the previous training. The effective area as a function of

true energy has a lower threshold than the reconstructed one due to a higher bias

in energy reconstruction which reconstructs events at a higher energy than the true

energy. Above 100 GeV, the effective area with respect to true and reconstructed

energy are consistent with one another.

The effective area for the ultraloose cut on the other hand has a lower threshold

(less than 100 GeV) than the safe config. This is because the loose cuts retain more

of the low-energy events and have a higher signal efficiency for events in the 60-250

p.e. range. The lower threshold would be beneficial to detect the flux below 100 GeV

from pulsars or AGNs. Above 1 TeV the area is more comparable between the two

models as both the safe and loose cuts would retain a similar fraction of events at

this energy.

The overall angular resolution depends on both the reconstruction and gamma-

hadron separation. For the same reconstructed events, if the gamma-hadron cut

selects more signal events, then the containment radius would be larger and therefore
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3.6 Size Ranges

(a) (b)

Fig 3.13: (a) The effective area after ζBDT cut as a function of true and reconstructed
energy for the safe configuration compared with the old simulations. (b) the effective area
after ζBDT cut compared between the safe and loose configuration.

the angular resolution would also be larger. Since the loose cuts (peak 1) select more

low energy events that also have poor reconstruction compared to high energy events,

the resolution is worse. Whereas in the case of safe cuts which have a relatively small

number of low-energy events, the resolution is comparitively better. For energy above

1 TeV, the plots converge as the classifier performance is more or less the same in

both the cases and the cuts would select for a similar fraction of events.

The ultraloose cuts at peak 2 allow for even more of the low-energy events to pass

through the selection cuts and combined with comparatively worse reconstruction,

the containment radius is the highest of all the three cuts below 1 TeV.

3.6 Size Ranges

The model that was trained on events of all sizes in the loose config performs poorly

for events in the 60-250 p.e. range, as evident from Fig 3.8a. It could be a possibility

that since the classifier has to learn the features for all size ranges its classifing power

is not evenly distributed among events of all size ranges. It would be interesting to

see whether the classifier would perform better by training on events in a specific size

range, and in this case that would be 60-250 p.e. Since the new parameters do help

improve the performance, this training is performed including those parameters. The

classifier output for the training carried out on these specific events is shown in Fig

3.8b, compared to the prediction for the events in the same size range by a model
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3.7 Performance with distance from zenith

Fig 3.14: The angular resolution as a function of true energy for the safe cuts and the two
loose cuts. They represent the 68% containment radius of events that pass the ζBDT cut.

trained on the events of all sizes in the loose config. The distributions are very similar

to each other, indicating that the classifier does not perform significantly better when

trained in this size range. The hollow signal distribution does shift slightly towards

the right indicating a slight performance improvement, although the peak is still near

0.7. The rest of the events in the size range of 250 p.e and above have already been

discussed in section 3.3.

3.7 Performance with distance from zenith

The trend in the performance of the classifier after including the new parameters in

training across zenith angles is similar to what was discussed earlier. That is, the

new parameters do help improve the performance (see Fig 3.15a) across all zenith

angle bands. Further, there seems to be an increase in AUC as the zenith angle

increases. This can be associated with the fact that as the zenith angle of observation

increases, the Cherenkov light needs to travel a longer distance before reaching the

telescope optics. This implies that light from low-energy showers is absorbed more

in comparison to high-energy showers, and for the same source spectrum, the energy

distribution shifts along the energy axis as the zenith angle increases. Plotting the

peak of the energy distribution for different zenith angles shows this shift (Fig 3.15b).

Therefore, there are relatively more high-energy events as the zenith angle increases.

As seen earlier in Fig 3.2, since the parameter distributions between the signal and

background are more separated for high-energy events, the performance increases for

higher zenith angles.
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3.8 Diffuse gammas

Fig 3.15: Left The performance of the classifier as a function of angle from the zenith.
Right The shift in the peak value of the true energy distribution, as zenith angle increases.

3.8 Diffuse gammas

The datasets (MC simulations) used for the training are based on point source sim-

ulations at 0.5 deg offset and contain shower images that originate from one part of

the sky. In H.E.S.S, the source is normally simulated on the x-axis of the camera

coordinate system. Due to this reason, the number of shower images would be more

on the right-hand side of the y-axis. On the contrary, the background events are

isotropic and the events are more or less the same in each quadrant of the camera.

In real observations though, the source might not be in the same position at every

instance and would certainly not be on the x-axis for the majority of the time. It

is important to make sure during training that the BDT does not learn where the

events originate from. In other words, if the trained model were to be tested on events

originating from an entirely different position in the camera, the performance should

not differ. If it does differ, then it would mean the ζBDT cut would produce varying

signal efficiency in different parts or quadrants of the camera.

Diffuse MC simulations can be used to perform this consistency check. These have

events that originate from every direction with respect to the camera. Fig 3.16 shows

the performance of the BDT trained with point source simulations, on the events

from the diffuse simulations divided with respect to each camera quadrant. It can

be seen that the performance is not the same in each of the quadrants. Moreover,

it seems that the performance of the 1st and 2nd quadrants are comparable to that

of the 4th and 3rd quadrants respectively. The performance decreases (the peak is

less sharp) for events from the left side of the y-axis. This would imply that the

classifier is learning that the events coming from Q1 and Q4, which is where the MC
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3.8 Diffuse gammas

Fig 3.16: The classifier trained on point source simulations being evaluated on showers
from different camera quadrants from the diffuse simulations. The performance is quadrant
dependent. The psicut here refers to events selected between an angular size of 0.4 to 0.6
deg

simulations are based, are more likely to be signal and get a higher probability score

whereas relatively more events from Q2 and Q3 are classified with a lower probability.

One way the quadrant dependence could arise would be due to the inclusion of

some parameter in the training that could directly relate to the location of the source.

For example, the center of gravities of the images are not used in training as the

classifier could directly learn the position of the source. But, from the definition of the

variables, none of them have a dependence on the location in any way so this cannot

be the issue. Since the BDT classifier uses the parameters for the training, if any

parameter happens to be quadrant-dependent, then this could result in a quadrant-

dependent performance as the parameter distribution of the simulated source would

mostly be localized to two quadrants. Upon using the diffuse simulations to check for

this, the parameters that seem to have a quadrant dependence are the time gradient,

charge asymmetry, Width1, Width2 and skewness.

Apart from skewness, the rest of the parameters are not inherently quadrant-

dependent, but when the skewness is used to flip the sign of the distribution of

say the time gradient, the resulting distribution does vary with the quadrant. The

distribution of skewness, and the time gradient after flipping using skewness is shown

in Fig 3.17. The skewness peaks at two different values depending on the quadrants.

For both the plots in Fig 3.17, two distinct distributions seem to be separated, with

Q1 and Q2 having the same distribution as Q4 and Q3 respectively, which is similar

to the trend seen in the classifier output. Since the BDT is trained on events whose

showers are more in Q1 and Q4, the classifier would predict with a lower probability
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3.8 Diffuse gammas

(a) (b)

Fig 3.17: (a) The skewness distribution based on camera quadrants for events within an
angular cut of 0.4 to 0.6 deg. It peaks at two different values depending on the quadrant.
(b) The time gradient distribution after flipping the sign using the skewness also showing
a similar quadrant dependence.

for showers from Q2 and Q4 due to them having a slightly different distribution.

The effect the quadrant dependence can have on the ζBDT distribution is shown in

Fig 3.18a, for a model trained with the Hillas Parameters and only the time gradient

and with skewness used to change its sign. The signal efficiency varies between the

two halves of the camera for a ζBDT value of around 0.8. Comparatively, Fig 3.18b

shows the ζBDT distribution for a model with the same parameters but the only

difference being that the absolute value of time gradient is used instead of using the

skewness to flip the sign. This distribution does not exhibit a quadrant dependence

like before. Although the skewness distribution varies with quadrant, the absolute

value of skewness is quite consistent across the four quadrants due to which after the

addition of the absolute value of time gradient to the old set of parameters, the ζBDT

distribution is not expected to be quadrant dependent.

The systematic uncertainty in the flux measurements is estimated to be around

20 percent [17]. This uncertainty arises due to contributions from various sources of

error like the MC atmospheric simulations, MC shower interaction models, the effect

of missing pixels, etc. Although the variation of signal efficiency across the quadrants

is not ideal, it is within the uncertainty limits. Therefore, for the purpose of this

analysis, the distributions are flipped using the sign of the skewness.
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3.8 Diffuse gammas

(a) (b)

Fig 3.18: The ζBDT distribution of classifier trained with (a) Hillas parameters and time
gradient with signs flipped using skewness (b) Hillas parameters and the absolute value of
time gradient.
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Chapter 4

Application to the Vela pulsar

The following section involves the application of the improved training of the loose

config on the Vela pulsar. The datasets used contain observations/runs from two

periods: dataset 1 with runs from 2019 - 2020 and dataset 2 with runs from 2022

(refer Table 4.1). The datasets have been processed using the BDT model from

the new training with a ζBDT cut of 0.78 (ultraloose cut). The datasets contain

the selected events with each event having the information of reconstructed energy,

direction, time of arrival and several other parameters. They also contain the IRFs

that were calculated for the ζBDT cut . The gammapy 1package is used for the

analysis of the datasets.

Dataset Name Year
Trigger
threshold

Dataset 1 2019-2020 nominal
Dataset 2 2022 nominal
Dataset 3 2021 reduced

Table 4.1: Time of observation of datasets used and their trigger threshold

4.1 Phasogram

The signal arrives at short intervals from the pulsar separated by a duration equal

to the rotation period of the pulsar. The events recorded outside this interval are

considered entirely background events. By knowing the period and period derivative

of the pulsar, each event can be assigned a quantity called phase having a value

between 0 to 1. The phase interval that contains the pulsed emission is called the ON

1gammapy package: https://github.com/gammapy/gammapy
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4.1 Phasogram

(a) (b)

Fig 4.1: (a) The phasogram of Vela from dataset 1 with the old training. Overlayed on
top are the ON and OFF regions, with the horizontal lines representing the upper and lower
limits of the background counts estimated from the OFF region . (b) Phasogram of Vela
from dataset 1 with the new training.

region and the interval that contains only the background counts is called the OFF

region (refer Fig 4.1a). The phase can be thought of in the same way any rotating

body could be characterized by a phase angle. The signal from the pulsar would

arrive in phase whereas the background is arbitrary. To get better statistics on the

signal, the events with the same phase are stacked on one another in a process called

phase folding. With enough statistics, any pulsed signal would be visible as a peak

with respect to the background.

The phase folding is carried out using a package called PINT 2 which uses an

ephemeris file containing the known information of the period and period derivatives

of the pulsar. The histogram of the phases called the phasogram for dataset 1 for

events selected within a radius of 0.2 deg from Vela’s position is shown in Fig 4.1b.

Having a large radius would ensure that most of the signal events are selected. The

sharp peak from the pulsar is visible at a phase value slightly less than 0.6. For

comparison, the phasogram obtained using the training previously used in H.E.S.S

on the same dataset is shown in Fig 4.1a. The peak is at the same phase for both

datasets but there are some differences. The average counts from the new training is

almost half as much as the old training. In addition, the fluctuations are more with

the old training. In the case of dataset 2, the peak from the new training (see Fig

4.2) is also near the same phase as before but can be seen more clearly compared to

the old training where the peak is not very evident.

2PINT package : https://github.com/nanograv/PINT
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4.1 Phasogram

(a) (b)

Fig 4.2: The phasogram of Vela from dataset 2 with (a) the old training (b) the new
training.

The ON region also contains background counts that need to be estimated to know

how significant the signal is compared to the background. The number of background

events Noff can be estimated from the OFF region where it is known beforehand that

it contains no signal from the pulsar. Since the background events occur at random,

the number of background events in a given phase interval is supposed to be the same

wherever this interval is considered in the phasogram. If α is the ratio of the ON

region to the OFF region, the number of excess counts within the ON region can be

calculated using the below equation,

Nexcess = Non − αNoff (4.1)

The significance obtained for the ON phase range (0.55-0.65) and OFF phase re-

gion (0.7-1.0) for dataset 1 having calculated Nexcess and Noff is 3.4 σ above the

background with the new training which is slightly lower in comparison to the old

training in which case the significance is 3.6 σ. The older training seems to be per-

forming marginally better in this case. The difference is most likely due to statistical

fluctuations and the choice of the ON region. For dataset 2 the significance is 1.3 σ

with the old training but is 3.8 σ with the new one. In this case, the new training

seems to be beneficial.

One thing to note is that for around half the number of observations in dataset

2 the zenith angle of observation is over 40 deg. Low energy events are more likely

to get absorbed in the atmosphere before reaching the telescope for large zenith

angles. For the ones that do reach, the performance of the gamma-hadron separation
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4.2 Spectrum

would influence whether or not those events get selected. From the significances and

phasograms in Fig 4.2 it looks like the new training performs better at larger zenith

angles of observation.

4.2 Spectrum

The counts binned in reconstructed energy need to be now related to the flux to

obtain a spectrum as a function of energy. To perform this, a spectral model is

assumed which in this case is a power law of the form

dN/dE = ϕ0(E/E0)
−Γ (4.2)

with the free parameters being the spectral index Γ and the flux normaliation ϕ0,

for a reference energy E0 which is fixed. The IRFs are then used to convert the flux

units to counts as a function of reconstructed energy using the effective area, livetime

(observation time) and energy dispersion (Eq 2.1). The counts from the model are fit

to the dataset by varying Γ and ϕ0 and maximizing the likelihood ratio with respect

to the null hypothesis assumption. This fitting provides a global spectral model.

The actual flux points might vary individually with respect to the global model.

To account for this the same model is then re-fitted by fixing the Γ obtained from

the previous fit and then fitting only for the normalization ϕ0 for resampled energy

bins. The resulting normalizations per energy bin are the flux points.

The spectrum with the global model and the flux points for dataset 1 and 2

is presented in Fig 4.3 with its error band. Overlayed on top is the error margin

including systematic uncertainties and the global model from the previous H.E.S.S

Vela detection [11]. From both the plots it can be seen that although the fitted

spectral model is not the same as the previous model, they are well within the previous

uncertainty limits. The last two flux points in Fig 4.3b suffer from a lack of statistics

resulting in only upper limits. Although the difference between the models could be

resulting from the new training, it is currently not straightforward to identify the

exact reason due to the fact that there are multiple systematic uncertainties involved

like having a newer simulation, a different IRF and energy correction scheme, etc. It

is however a good indication that both the models are within the uncertainty margin

of the previous detection, including most of the flux points. The spectrum obtained

by stacking the two datasets is presented in Fig 4.4a with better statistics, and is well

within the uncertainty margin except for the first flux point. This could be due to

the effective area being very steep near the threshold resulting in larger fluctuations.
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4.3 Reduced threshold dataset

(a) (b)

Fig 4.3: (a) The spectrum of Vela obtained from dataset 1. The solid green line is the
global best-fit model with its error bands, the dotted black line is the H.E.S.S best-fit model
from [11] with its error bands in grey. The green dots are the flux points. (b) The spectrum
of Vela obtained from dataset 2.

4.3 Reduced threshold dataset

This section presents the application of the new training on a Vela dataset that con-

tains observations recorded at a reduced trigger threshold (Dataset 3). The lower

trigger threshold enables more low-energy events to trigger the telescope and get

recorded. The same training and ultraloose ζBDT cuts were applied in the produc-

tion of the dataset, although the training was performed for nominal threshold MC

simulations.

The phasogram for this dataset is compared between the new and the old training

(also trained with nominal threshold) in Fig 4.5. For both the trainings, the peak is

quite significant compared to the previous two datasets. This difference can majorly

be attributed to the reduced threshold as the duration of observation is comparable

between this dataset (37.5 hours) and the total combined duration of dataset 1 and

2 (∼ 30 hours). The peak consists of a rising edge and a sharp cutoff after the peak,

characteristic of the Vela pulse profile seen in Fig 1.3.

There is also a considerable difference between Fig 4.5a and Fig 4.5b . One, the

significance of the pulse in the ON phase range is comparatively greater with the new

training, with 16.4 σ with the old training and 24 σ with the new one. The peak is

more sharp with the rising edge of the peak having more structure. Second, the other

two features of the pulse profile mentioned in section 1.4 can now be faintly seen in
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4.3 Reduced threshold dataset

(a) (b)

Fig 4.4: (a) The spectrum obtained by stacking datasets 1 and 2 (b) The spectrum
obtained from the dataset with a reduced trigger threshold.

the phasogram above the background. These two features are the P1 peak (refer Fig

4.5b) and the bridge emission between the main peak (P2) and P1. These features

have been previously observed in the γ-ray domain by space-based telescopes like the

Fermi-LAT, but this is the first time hints of this emission can be seen with an IACT.

(a) (b)

Fig 4.5: The phasogram of Vela from the reduced trigger threshold dataset processed with
the old training and compared with the new training. Hints of peak P1 and bridge emission
seen for the first time with an IACT.

The spectrum from this dataset with the new training is presented in Fig 4.4b. The

best-fit model and the flux points are well constrained within the previous uncertainty

limits, showing an agreement with the previous model. Any difference between the
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4.3 Reduced threshold dataset

current and previous model could arise from the fact that dataset 3 was processed

with the new training performed on simulations with a nominal trigger threshold.

This could add to the error from reconstruction and gamma-hadron separation and

it is unclear how this would affect the systematic uncertainities. However, from the

spectrum, it can be said that the effect is not severe.
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Chapter 5

Conclusion

The boosted decision tree classifier was trained on point source MC simulations of

γ-ray showers and OFF runs for cosmic ray showers using two sets of parameters,

one including the new variables and the other without. The training performed on

events from two configurations, safe and loose showed an increase in performance

with the addition of new parameters. The increase in area under the curve was more

for safe compared to loose. In both cases, the most important parameter among the

new ones turned out to be the time gradient. The increase in performance upon the

inclusion of the new variables was consistent across the zenith angle bands for both

configurations.

For the loose config, the events in the 60-250p.e. range were grouped around a sec-

ond peak in the distribution of all three widths, and for both signal and background.

Evidently, the classifier performed poorly on these events. Further, a classifier trained

specifically in this size range also did not improve the performance by a large margin.

The low pixel and amplitude events in this size range are most likely the reason for

the poor performance due to an ambiguity in properly defining some of the param-

eters on them. The IRFs produced from this config for the ultraloose cut reached a

threshold lower than 100 GeV with a large containment radius in comparison to the

safe cuts.

The application of the models on diffuse MC simulations revealed that the per-

formance was quadrant dependent, with the classifier performing the best on the

quadrants where the point source MC simulations were based on. The ζBDT distri-

bution showed varying signal efficiency with respect to the quadrants. This quadrant

dependence arose due to the skewness parameter having a different distribution on

the left and right sides of the y-axis. When used to determine the sign of the time

gradient, the skewness induced a quadrant dependency similar to the one seen in

the classifier output. The ζBDT variation was within the 20 percent systematic uncer-
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tainty estimated in H.E.S.S. Using the absolute value of time gradient instead showed

that the quadrant dependence on the ζBDT could be reduced. Although parameters

with the skewness flip werr used for the purpose of this analysis, using the absolute

value or a quantity other than skewness that does not have a quadrant dependence

to flip the signs might be beneficial to reduce the systematic errors.

The phasogram of the Vela pulsar using datasets processed with the ultraloose

ζBDT cut and taken at nominal trigger threshold showed that the new training per-

forms either similar or better in comparison to the old training. The significance of

the pulse from Dataset 1 using the new training was comparable to the training pre-

viously done in H.E.S.S. In addition, the fluctuations in the number of counts across

different bins seemed to have reduced. A different choice of the ON phase region

might produce different results. With Dataset 2 on the other hand the peak was over

twice more significant with the new training. Dataset 2 having many runs at a higher

zenith, the result from the new training might suggest that it can handle large zenith

angles better.

The reduced trigger threshold dataset produced the most significant pulse in com-

parison to the other datasets. Moreover, the pulse was more significant with the new

training. The new training was also beneficial in capturing more structure of the

main peak. Two other features that were visible in the Fermi-LAT phasogram, i.e.

the P1 peak and the bridge emission were now faintly visible above the background,

observed for the first time with an IACT.

The fitted spectrum in the energy range of 30 to 100 GeV for Datasets 1 and 2

were in agreement with the previous H.E.S.S detection, within the uncertainty limits

from [11]. It is currently not clear the reason for the variation in the fitted models due

to some processes in the analysis having changed since the previous detection. The

spectral model from the reduced threshold dataset was the best-constrained within

the said uncertainty limits compared to all the datasets. Judging from this spectrum,

using the training performed on nominal threshold simulations does not seem to have

a significant effect on the performance, but this needs to be further investigated.

Including the low intensity events for the analysis does produce a spectrum within

the uncertainity limits. By using a background estimation technique that relies on

the timing information, low-energy signal events can be separated from low energy

background events despite having a lot more background events after the ultraloose

cut. But the effect of any inconsistency in the gamma-hadron separation, due to

the inclusion of these events, on any other background estimation technique needs

to be explored by using a different background estimation technique or performing

an analysis with the ultraloose cuts on a different source. Lastly, it might also be

44



beneficial to further reduce the image amplitude cut (<60 p.e.) and the number of

pixels (<6) followed by the optimization of training to detect more low-energy events

from pulsars.
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